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Electric	field	perpendicular	to	magnetic	field

It	isn't.	Consider,	for	example,	an	infinite	horizontal	sheet	of	positive	charge	with	an	infinite	current-carrying	wire,	parallel	to	the	sheet,	suspended	above	it.	The	electric	field	from	the	charged	sheet	points	upward	everywhere	above	it.	The	magnetic	field	curls	around	the	wire.	This	means	that,	in	the	plane	that	contains	the	wire	and	is	parallel	to	the
charged	sheet,	the	magnetic	field	is	parallel	(or	antiparallel)	to	the	electric	field	in	this	case.	Next:	Exercises	Up:	Multi-Dimensional	Motion	Previous:	Projectile	Motion	with	Air	Consider	a	particle	of	mass	and	electric	charge	moving	in	the	uniform	electric	and	magnetic	fields,	and	.	Suppose	that	the	fields	are	``crossed''	(i.e.,	perpendicular	to	one
another),	so	that	.	The	force	acting	on	the	particle	is	given	by	the	familiar	Lorentz	law:	(194)	where	is	the	particle's	instantaneous	velocity.	Hence,	from	Newton's	second	law,	the	particle's	equation	of	motion	can	be	written	(195)	It	turns	out	that	we	can	eliminate	the	electric	field	from	the	above	equation	by	transforming	to	a	different	inertial	frame.
Thus,	writing	(196)	Equation	(195)	reduces	to	(197)	where	we	have	made	use	of	a	standard	vector	identity	(see	Section	A.10),	as	well	as	the	fact	that	.	Hence,	we	conclude	that	the	addition	of	an	electric	field	perpendicular	to	a	given	magnetic	field	simply	causes	the	particle	to	drift	perpendicular	to	both	the	electric	and	magnetic	field	with	the	fixed
velocity	(198)	irrespective	of	its	charge	or	mass.	It	follows	that	the	electric	field	has	no	effect	on	the	particle's	motion	in	a	frame	of	reference	which	is	co-moving	with	the	so-called	E-cross-B	velocity	given	above.	Let	us	suppose	that	the	magnetic	field	is	directed	along	the	-axis.	As	we	have	just	seen,	in	the	frame,	the	particle's	equation	of	motion
reduces	to	Equation	(197),	which	can	be	written:	(199)	(200)	(201)	Here,	(202)	is	the	so-called	cyclotron	frequency.	Equations	(199)-(201)	can	be	integrated	to	give	(203)	(204)	(205)	where	we	have	judiciously	chosen	the	origin	of	time	so	as	to	eliminate	any	phase	offset	in	the	arguments	of	the	above	trigonometrical	functions.	According	to
Equations	(203)-(205),	in	the	frame,	our	charged	particle	gyrates	at	the	cyclotron	frequency	in	the	plane	perpendicular	to	the	magnetic	field	with	some	fixed	speed	,	and	drifts	parallel	to	the	magnetic	field	with	some	fixed	speed	.	The	fact	that	the	cyclotron	frequency	is	positive	for	positively	charged	particles,	and	negative	for	negatively	charged
particles,	just	means	that	oppositely	charged	particles	gyrate	in	opposite	directions	in	the	plane	perpendicular	to	the	magnetic	field.	Equations	(203)-(205)	can	be	integrated	to	give	(206)	(207)	(208)	where	we	have	judiciously	chosen	the	origin	of	our	coordinate	system	so	as	to	eliminate	any	constant	offsets	in	the	above	equations.	Here,	(209)	is	called
the	Larmor	radius.	Equations	(206)-(208)	are	the	equations	of	a	spiral	of	radius	,	aligned	along	the	direction	of	the	magnetic	field	(i.e.,	the	-direction).	Figure	12:	The	spiral	trajectory	of	a	negatively	charged	particle	in	a	magnetic	field.	We	conclude	that	the	general	motion	of	a	charged	particle	in	crossed	electric	and	magnetic	field	is	a	combination	of
drift	[see	Equation	(198)]	and	spiral	motion	aligned	along	the	direction	of	the	magnetic	field--see	Figure	12.	Particles	drift	parallel	to	the	magnetic	field	with	constant	speeds,	and	gyrate	at	the	cyclotron	frequency	in	the	plane	perpendicular	to	the	magnetic	field	with	constant	speeds.	Oppositely	charged	particles	gyrate	in	opposite	directions.	Next:
Exercises	Up:	Multi-Dimensional	Motion	Previous:	Projectile	Motion	with	Air	Richard	Fitzpatrick	2011-03-31	The	only	way	for	a	vector	field	to	have	strict	spherical	symmetry	is	for	it	to	be	purely	in	the	radial	direction.	For,	if	it	had	a	non-radial	component	then	that	component	would	have	to	be	preserved	under	rotations,	but	you	cannot	construct	a
vector	field	which	has	that	property	everywhere	on	the	surface	of	a	sphere.	I	provide	a	proof	below.	(This	is	closely	related	to,	but	not	exactly	the	same	as,	the	hairy	ball	theorem.)	So	the	only	type	of	vector	field	which	has	strict	spherical	symmetry	is	a	purely	radial	one,	such	as	a	Coulomb	field.	Such	a	field	cannot	be	an	electromagnetic	wave.	So	it	is
not	possible	to	have	exactly	a	spherical	electromagnetic	wave	(i.e.	one	with	no	change	at	all	under	rotations).	You	can	have	a	wave	which	in	the	limit	$r	\rightarrow	\infty$	has	spherical	wavefronts	and	is	transverse,	but	I	suppose	the	question	is	not	about	that	limit,	since	it	amounts	to	adopting	a	plane	wave	approximation	for	each	part	of	the	spherical
wavefront.	You	can	have	an	oscillating	field	which	has	spherical	wavefronts,	where	a	wavefront	is	a	locus	of	a	fixed	value	of	the	phase	of	the	oscillation.	Such	a	field	is	not	exactly	transverse	everywhere.	A	proof	of	the	claim	(I	just	made	up	this	proof;	I'm	adding	it	to	see	if	anyone	likes	it	or	tells	me	it	is	not	good	enough.)	Take	a	sphere,	and	put	a	vector
$\bf	E$	at	some	point	P	on	it.	Let's	define	the	'equator'	of	our	sphere	to	be	the	great	circle	running	through	P	and	parallel	to	$\bf	E$	there.	Now	rotate	the	sphere	through	90	degrees,	carrying	P	and	$\bf	E$	up	to	the	north	pole.	The	vector	is	pointing	in	a	direction	we	shall	agree	to	call	$x$.	Now	return	to	the	initial	condition,	and	this	time	rotate	the
ball	by	90	degrees	about	an	axis	through	the	poles,	thus	carrying	P	around	the	equator,	and	$\bf	E$	with	it.	Then	rotate	again,	carrying	P	up	to	the	north	pole.	Now	$\bf	E$	is	sitting	at	the	north	pole	and	pointing	in	a	direction	$y$,	at	right	angles	to	the	direction	we	got	in	the	first	rotation.	But	if	we	had	been	able	to	paint	a	vector	field	onto	our	sphere
such	that	it	had	spherical	symmetry,	then	these	two	transformations	should	both	give	no	net	effect	on	the	whole	sphere,	and	therefore	both	should	carry	$\bf	E$	to	a	direction	at	the	pole	which	would	be	the	same	in	both	cases.	But	it	is	not	the	same,	so	we	have	a	contradiction,	and	the	false	step	was	the	assumption	that	a	vector	field	could	be	painted
on	the	sphere	in	a	spherically	symmetric	way.	Working	off-campus?	Learn	about	our	remote	access	options	A	strain-mediated	perpendicular	magnetic	anisotropy	(PMA)	and	current-induced	magnetization	switching	via	spin–orbit	torque	(SOT)	in	PbMg1/3Nb2/3O3-PbTiO3	(PMN-PT)/Ta/Pt/Co/Pt	ferromagnetic	heterostructures	are	reported.	It	is	found
that	the	PMA	changes	regularly	with	the	preloaded	lateral	electric	field.	The	SOT-based	current-induced	magnetization	switching	also	shows	a	reversible	trend	via	applying	a	lateral	electric	field.	Domain	wall	propagation	driven	by	electric	field	is	observed	directly	under	a	fixed	perpendicular	magnetic	field	by	magnetic	optical	Kerr	(MOKE)
microscope.	These	behaviors	can	be	attributed	to	the	strain	from	the	PMN-PT	substrates	induced	by	the	piezoelectric	effect	under	electric	field.	Basing	on	the	domain	wall	motion	mechanism,	repeatable	resistance	states	of	the	Hall	bar	can	be	controlled	by	external	electric	field	under	a	small	auxiliary	magnetic	field,	which	enables	the	information
recorded	in	the	device	can	be	programmed	by	voltage.	This	study	provides	a	potential	method	to	design	the	electric	field	controlled	spintronic	devices.	The	full	text	of	this	article	hosted	at	iucr.org	is	unavailable	due	to	technical	difficulties.	The	most	succinct	answer	is	relativistic	covariance.	The	scalar	electric	potential	and	the	vector	magnetic
potential	are	the	components	of	a	four-vector	-	the	four-potential.	The	electric	and	magnetic	fields	are	then	components	of	a	four-tensor	-	the	Faraday	tensor.	This	is	so	that	the	electric	and	magnetic	fields	transform	properly	under	a	Lorentz	transformation.	Interestingly,	when	thinking	in	terms	of	spacetime	and	four-vectors,	the	electromagnetic	four-
force	on	a	particle	is	(Minkowski)	orthogonal	to	the	particle's	four-velocity.	Simply	put,	a	particle's	four-velocity	has	constant	length	and	thus,	the	four-acceleration	must	by	(Minkowski)	orthogonal,	i.e.,	acceleration	can	only	change	the	direction	of	the	four-velocity,	not	the	length.	The	Lorentz	force,	expressed	in	four-vector	notation	is
$$\frac{dp_{\alpha}}{d\tau}	=	qF_{\alpha	\beta}u^{\beta}	$$	The	left	hand	side	is	the	four-force,	the	right	hand	side	is	the	product	of	the	charge	of	the	particle	with	the	contraction	of	the	Faraday	tensor	and	the	four-velocity.	For	a	particle	at	rest,	the	four-velocity	points	in	the	time	direction	and	it's	straight	forward	to	show	that	the	four-force	is	due
to	the	electric	field	and	points	in	a	space	direction,	i.e.,	the	four-force	due	to	the	electric	field	is	orthogonal	to	the	particle's	four-velocity.	Thus,	we	see	that,	in	the	relativistic	four-vector	context,	both	the	electric	and	magnetic	forces	are	orthogonal	to	the	particle's	four-velocity.	To	summarize,	starting	with	the	manifestly	covariant	four-potential	and	its
exterior	derivative,	the	Faraday	tensor,	and	the	Lorentz	force	law,	we	find	that	the	3D	+	1	expression	for	the	Lorentz	force	is	$$\frac{d\vec	p}{dt}	=	q(\vec	E	+	\vec	v	\times	\vec	B)$$	$$\frac{dE}{dt}	=	q\vec	v	\cdot	\vec	E	$$	where	\$E\$	is	the	particle's	energy.	We	want	now	to	describe—mainly	in	a	qualitative	way—the	motions	of	charges	in
various	circumstances.	Most	of	the	interesting	phenomena	in	which	charges	are	moving	in	fields	occur	in	very	complicated	situations,	with	many,	many	charges	all	interacting	with	each	other.	For	instance,	when	an	electromagnetic	wave	goes	through	a	block	of	material	or	a	plasma,	billions	and	billions	of	charges	are	interacting	with	the	wave	and
with	each	other.	We	will	come	to	such	problems	later,	but	now	we	just	want	to	discuss	the	much	simpler	problem	of	the	motions	of	a	single	charge	in	a	given	field.	We	can	then	disregard	all	other	charges—except,	of	course,	those	charges	and	currents	which	exist	somewhere	to	produce	the	fields	we	will	assume.	We	should	probably	ask	first	about	the
motion	of	a	particle	in	a	uniform	electric	field.	At	low	velocities,	the	motion	is	not	particularly	interesting—it	is	just	a	uniform	acceleration	in	the	direction	of	the	field.	However,	if	the	particle	picks	up	enough	energy	to	become	relativistic,	then	the	motion	gets	more	complicated.	But	we	will	leave	the	solution	for	that	case	for	you	to	play	with.	Next,	we
consider	the	motion	in	a	uniform	magnetic	field	with	zero	electric	field.	We	have	already	solved	this	problem—one	solution	is	that	the	particle	goes	in	a	circle.	The	magnetic	force	$q\FLPv\times\FLPB$	is	always	at	right	angles	to	the	motion,	so	$d\FLPp/dt$	is	perpendicular	to	$\FLPp$	and	has	the	magnitude	$vp/R$,	where	$R$	is	the	radius	of	the
circle:	\begin{equation*}	F=qvB=\frac{vp}{R}.	\end{equation*}	The	radius	of	the	circular	orbit	is	then	\begin{equation}	\label{Eq:II:29:1}	R=\frac{p}{qB}.	\end{equation}	That	is	only	one	possibility.	If	the	particle	has	a	component	of	its	motion	along	the	field	direction,	that	motion	is	constant,	since	there	can	be	no	component	of	the	magnetic
force	in	the	direction	of	the	field.	The	general	motion	of	a	particle	in	a	uniform	magnetic	field	is	a	constant	velocity	parallel	to	$\FLPB$	and	a	circular	motion	at	right	angles	to	$\FLPB$—the	trajectory	is	a	cylindrical	helix	(Fig.	29–1).	The	radius	of	the	helix	is	given	by	Eq.	(29.1)	if	we	replace	$p$	by	$p_\perp$,	the	component	of	momentum	at	right
angles	to	the	field.	Fig.	29–1.Motion	of	a	particle	in	a	uniform	magnetic	field.	A	uniform	magnetic	field	is	often	used	in	making	a	“momentum	analyzer,”	or	“momentum	spectrometer,”	for	high-energy	charged	particles.	Suppose	that	charged	particles	are	shot	into	a	uniform	magnetic	field	at	the	point	$A$	in	Fig.	29–2(a),	the	magnetic	field	being
perpendicular	to	the	plane	of	the	drawing.	Each	particle	will	go	into	an	orbit	which	is	a	circle	whose	radius	is	proportional	to	its	momentum.	If	all	the	particles	enter	perpendicular	to	the	edge	of	the	field,	they	will	leave	the	field	at	a	distance	$x$	(from	$A$)	which	is	proportional	to	their	momentum	$p$.	A	counter	placed	at	some	point	such	as	$C$	will
detect	only	those	particles	whose	momentum	is	in	an	interval	$\Delta	p$	near	the	momentum	$p=qBx/2$.	Fig.	29–2.A	uniform-field	momentum	spectrometer	with	$180^\circ$	focusing:	(a)	different	momenta;	(b)	different	angles.	(The	magnetic	field	is	directed	perpendicular	to	the	plane	of	the	figure.)	It	is,	of	course,	not	necessary	that	the	particles	go
through	$180^\circ$	before	they	are	counted,	but	the	so-called	“$180^\circ$	spectrometer”	has	a	special	property.	It	is	not	necessary	that	all	the	particles	enter	at	right	angles	to	the	field	edge.	Figure	29–2(b)	shows	the	trajectories	of	three	particles,	all	with	the	same	momentum	but	entering	the	field	at	different	angles.	You	see	that	they	take
different	trajectories,	but	all	leave	the	field	very	close	to	the	point	$C$.	We	say	that	there	is	a	“focus.”	Such	a	focusing	property	has	the	advantage	that	larger	angles	can	be	accepted	at	$A$—although	some	limit	is	usually	imposed,	as	shown	in	the	figure.	A	larger	angular	acceptance	usually	means	that	more	particles	are	counted	in	a	given	time,
decreasing	the	time	required	for	a	given	measurement.	By	varying	the	magnetic	field,	or	moving	the	counter	along	in	$x$,	or	by	using	many	counters	to	cover	a	range	of	$x$,	the	“spectrum”	of	momenta	in	the	incoming	beam	can	be	measured.	[By	the	“momentum	spectrum”	$f(p)$,	we	mean	that	the	number	of	particles	with	momenta	between	$p$
and	$(p+dp)$	is	$f(p)\,dp$.]	Such	measurements	have	been	made,	for	example,	to	determine	the	distribution	of	energies	in	the	$\beta$-decay	of	various	nuclei.	There	are	many	other	forms	of	momentum	spectrometers,	but	we	will	describe	just	one	more,	which	has	an	especially	large	solid	angle	of	acceptance.	It	is	based	on	the	helical	orbits	in	a
uniform	field,	like	the	one	shown	in	Fig.	29–1.	Let’s	think	of	a	cylindrical	coordinate	system—$\rho,\theta,z$—set	up	with	the	$z$-axis	along	the	direction	of	the	field.	If	a	particle	is	emitted	from	the	origin	at	some	angle	$\alpha$	with	respect	to	the	$z$-axis,	it	will	move	along	a	spiral	whose	equation	is	\begin{equation*}	\rho=a\sin	kz,\quad\theta=bz,
\end{equation*}	where	$a$,	$b$,	and	$k$	are	parameters	you	can	easily	work	out	in	terms	of	$p$,	$\alpha$,	and	the	magnetic	field	$B$.	If	we	plot	the	distance	$\rho$	from	the	axis	as	a	function	of	$z$	for	a	given	momentum,	but	for	several	starting	angles,	we	will	get	curves	like	the	solid	ones	drawn	in	Fig.	29–3.	(Remember	that	this	is	just	a	kind	of
projection	of	a	helical	trajectory.)	When	the	angle	between	the	axis	and	the	starting	direction	is	larger,	the	peak	value	of	$\rho$	is	large	but	the	longitudinal	velocity	is	less,	so	the	trajectories	for	different	angles	tend	to	come	to	a	kind	of	“focus”	near	the	point	$A$	in	the	figure.	If	we	put	a	narrow	aperture	of	$A$,	particles	with	a	range	of	initial	angles
can	still	get	through	and	pass	on	to	the	axis,	where	they	can	be	counted	by	the	long	detector	$D$.	Fig.	29–3.An	axial-field	spectrometer.	Particles	which	leave	the	source	at	the	origin	with	a	higher	momentum	but	at	the	same	angles,	follow	the	paths	shown	by	the	broken	lines	and	do	not	get	through	the	aperture	at	$A$.	So	the	apparatus	selects	a	small
interval	of	momenta.	The	advantage	over	the	first	spectrometer	described	is	that	the	aperture	$A$—and	the	aperture	$A'$—can	be	an	annulus,	so	that	particles	which	leave	the	source	in	a	rather	large	solid	angle	are	accepted.	A	large	fraction	of	the	particles	from	the	source	are	used—an	important	advantage	for	weak	sources	or	for	very	precise
measurements.	One	pays	a	price	for	this	advantage,	however,	because	a	large	volume	of	uniform	magnetic	field	is	required,	and	this	is	usually	only	practical	for	low-energy	particles.	One	way	of	making	a	uniform	field,	you	remember,	is	to	wind	a	coil	on	a	sphere,	with	a	surface	current	density	proportional	to	the	sine	of	the	angle.	You	can	also	show
that	the	same	thing	is	true	for	an	ellipsoid	of	rotation.	So	such	spectrometers	are	often	made	by	winding	an	elliptical	coil	on	a	wooden	(or	aluminum)	frame.	All	that	is	required	is	that	the	current	in	each	interval	of	axial	distance	$\Delta	x$	be	the	same,	as	shown	in	Fig.	29–4.	Fig.	29–4.An	ellipsoidal	coil	with	equal	currents	in	each	axial	interval	$\Delta
x$	produces	a	uniform	magnetic	field	inside.	Particle	focusing	has	many	applications.	For	instance,	the	electrons	that	leave	the	cathode	in	a	TV	picture	tube	are	brought	to	a	focus	at	the	screen—to	make	a	fine	spot.	In	this	case,	one	wants	to	take	electrons	all	of	the	same	energy	but	with	different	initial	angles	and	bring	them	together	in	a	small	spot.
The	problem	is	like	focusing	light	with	a	lens,	and	devices	which	do	the	corresponding	job	for	particles	are	also	called	lenses.	Fig.	29–5.An	electronic	lens.	The	field	lines	shown	are	“lines	of	force,”	that	is,	of	$q\FigE$.	One	example	of	an	electron	lens	is	sketched	in	Fig.	29–5.	It	is	an	“electrostatic”	lens	whose	operation	depends	on	the	electric	field
between	two	adjacent	electrodes.	Its	operation	can	be	understood	by	considering	what	happens	to	a	parallel	beam	that	enters	from	the	left.	When	the	electrons	arrive	at	the	region	$a$,	they	feel	a	force	with	a	sidewise	component	and	get	a	certain	impulse	that	bends	them	toward	the	axis.	You	might	think	that	they	would	get	an	equal	and	opposite
impulse	in	the	region	$b$,	but	that	is	not	so.	By	the	time	the	electrons	reach	$b$	they	have	gained	energy	and	so	spend	less	time	in	the	region	$b$.	The	forces	are	the	same,	but	the	time	is	shorter,	so	the	impulse	is	less.	In	going	through	the	regions	$a$	and	$b$,	there	is	a	net	axial	impulse,	and	the	electrons	are	bent	toward	a	common	point.	In	leaving
the	high-voltage	region,	the	particles	get	another	kick	toward	the	axis.	The	force	is	outward	in	region	$c$	and	inward	in	region	$d$,	but	the	particles	stay	longer	in	the	latter	region,	so	there	is	again	a	net	impulse.	For	distances	not	too	far	from	the	axis,	the	total	impulse	through	the	lens	is	proportional	to	the	distance	from	the	axis	(Can	you	see	why?),
and	this	is	just	the	condition	necessary	for	lens-type	focusing.	You	can	use	the	same	arguments	to	show	that	there	is	focusing	if	the	potential	of	the	middle	electrode	is	either	positive	or	negative	with	respect	to	the	other	two.	Electrostatic	lenses	of	this	type	are	commonly	used	in	cathode-ray	tubes	and	in	some	electron	microscopes.	Fig.	29–6.A
magnetic	lens.	Fig.	29–7.Electron	motion	in	the	magnetic	lens.	Another	kind	of	lens—often	found	in	electron	microscopes—is	the	magnetic	lens	sketched	schematically	in	Fig.	29–6.	A	cylindrically	symmetric	electromagnet	has	very	sharp	circular	pole	tips	which	produce	a	strong,	nonuniform	field	in	a	small	region.	Electrons	which	travel	vertically
through	this	region	are	focused.	You	can	understand	the	mechanism	by	looking	at	the	magnified	view	of	the	pole-tip	region	drawn	in	Fig.	29–7.	Consider	two	electrons	$a$	and	$b$	that	leave	the	source	$S$	at	some	angle	with	respect	to	the	axis.	As	electron	$a$	reaches	the	beginning	of	the	field,	it	is	deflected	away	from	you	by	the	horizontal
component	of	the	field.	But	then	it	will	have	a	lateral	velocity,	so	that	when	it	passes	through	the	strong	vertical	field,	it	will	get	an	impulse	toward	the	axis.	Its	lateral	motion	is	taken	out	by	the	magnetic	force	as	it	leaves	the	field,	so	the	net	effect	is	an	impulse	toward	the	axis,	plus	a	“rotation”	about	the	axis.	All	the	forces	on	particle	$b$	are	opposite,
so	it	also	is	deflected	toward	the	axis.	In	the	figure,	the	divergent	electrons	are	brought	into	parallel	paths.	The	action	is	like	a	lens	with	an	object	at	the	focal	point.	Another	similar	lens	upstream	can	be	used	to	focus	the	electrons	back	to	a	single	point,	making	an	image	of	the	source	$S$.	Fig.	29–8.The	resolution	of	a	microscope	is	limited	by	the
angle	subtended	from	the	source.	You	know	that	electron	microscopes	can	“see”	objects	too	small	to	be	seen	by	optical	microscopes.	We	discussed	in	Chapter	30	of	Vol.	I	the	basic	limitations	of	any	optical	system	due	to	diffraction	of	the	lens	opening.	If	a	lens	opening	subtends	the	angle	$2\theta$	from	a	source	(see	Fig.	29–8),	two	neighboring	spots
at	the	source	cannot	be	seen	as	separate	if	they	are	closer	than	about	\begin{equation*}	\delta\approx\frac{\lambda}{\sin\theta},	\end{equation*}	where	$\lambda$	is	the	wavelength	of	the	light.	With	the	best	optical	microscope,	$\theta$	approaches	the	theoretical	limit	of	$90^\circ$,	so	$\delta$	is	about	equal	to	$\lambda$,	or	approximately
$5000$	angstroms.	The	same	limitation	would	also	apply	to	an	electron	microscope,	but	there	the	wavelength	is—for	$50$-kilovolt	electrons—about	$0.05$	angstrom.	If	one	could	use	a	lens	opening	of	near	$30^\circ$,	it	would	be	possible	to	see	objects	only	$\tfrac{1}{5}$	of	an	angstrom	apart.	Since	the	atoms	in	molecules	are	typically	$1$	or
$2$	angstroms	apart,	we	could	get	photographs	of	molecules.	Biology	would	be	easy;	we	would	have	a	photograph	of	the	DNA	structure.	What	a	tremendous	thing	that	would	be!	Most	of	present-day	research	in	molecular	biology	is	an	attempt	to	figure	out	the	shapes	of	complex	organic	molecules.	If	we	could	only	see	them!	Unfortunately,	the	best
resolving	power	that	has	been	achieved	in	an	electron	microscope	is	more	like	$20$	angstroms.	The	reason	is	that	no	one	has	yet	designed	a	lens	with	a	large	opening.	All	lenses	have	“spherical	aberration,”	which	means	that	rays	at	large	angles	from	the	axis	have	a	different	point	of	focus	than	the	rays	nearer	the	axis,	as	shown	in	Fig.	29–9.	By
special	techniques,	optical	microscope	lenses	can	be	made	with	a	negligible	spherical	aberration,	but	no	one	has	yet	been	able	to	make	an	electron	lens	which	avoids	spherical	aberration.	Fig.	29–9.Spherical	aberration	of	a	lens.	In	fact,	one	can	show	that	any	electrostatic	or	magnetic	lens	of	the	types	we	have	described	must	have	an	irreducible
amount	of	spherical	aberration.	This	aberration—together	with	diffraction—limits	the	resolving	power	of	electron	microscopes	to	their	present	value.	The	limitation	we	have	mentioned	does	not	apply	to	electric	and	magnetic	fields	which	are	not	axially	symmetric	or	which	are	not	constant	in	time.	Perhaps	some	day	someone	will	think	of	a	new	kind	of
electron	lens	that	will	overcome	the	inherent	aberration	of	the	simple	electron	lens.	Then	we	will	be	able	to	photograph	atoms	directly.	Perhaps	one	day	chemical	compounds	will	be	analyzed	by	looking	at	the	positions	of	the	atoms	rather	than	by	looking	at	the	color	of	some	precipitate!	Magnetic	fields	are	also	used	to	produce	special	particle
trajectories	in	high	energy	particle	accelerators.	Machines	like	the	cyclotron	and	synchrotron	bring	particles	to	high	energies	by	passing	the	particles	repeatedly	through	a	strong	electric	field.	The	particles	are	held	in	their	cyclic	orbits	by	a	magnetic	field.	We	have	seen	that	a	particle	in	a	uniform	magnetic	field	will	go	in	a	circular	orbit.	This,
however,	is	true	only	for	a	perfectly	uniform	field.	Imagine	a	field	$B$	which	is	nearly	uniform	over	a	large	area	but	which	is	slightly	stronger	in	one	region	than	in	another.	If	we	put	a	particle	of	momentum	$p$	in	this	field,	it	will	go	in	a	nearly	circular	orbit	with	the	radius	$R=p/qB$.	The	radius	of	curvature	will,	however,	be	slightly	smaller	in	the
region	where	the	field	is	stronger.	The	orbit	is	not	a	closed	circle	but	will	“walk”	through	the	field,	as	shown	in	Fig.	29–10.	We	can,	if	we	wish,	consider	that	the	slight	“error”	in	the	field	produces	an	extra	angular	kick	which	sends	the	particle	off	on	a	new	track.	If	the	particles	are	to	make	millions	of	revolutions	in	an	accelerator,	some	kind	of	“radial
focusing”	is	needed	which	will	tend	to	keep	the	trajectories	close	to	some	design	orbit.	Fig.	29–10.Particle	motion	in	a	slightly	nonuniform	field.	Another	difficulty	with	a	uniform	field	is	that	the	particles	do	not	remain	in	a	plane.	If	they	start	out	with	the	slightest	angle—or	are	given	a	slight	angle	by	any	small	error	in	the	field—they	will	go	in	a	helical
path	that	will	eventually	take	them	into	the	magnet	pole	or	the	ceiling	or	floor	of	the	vacuum	tank.	Some	arrangement	must	be	made	to	inhibit	such	vertical	drifts;	the	field	must	provide	“vertical	focusing”	as	well	as	radial	focusing.	Fig.	29–11.Radial	motion	of	a	particle	in	a	magnetic	field	with	a	large	positive	slope.	One	would,	at	first,	guess	that
radial	focusing	could	be	provided	by	making	a	magnetic	field	which	increases	with	increasing	distance	from	the	center	of	the	design	path.	Then	if	a	particle	goes	out	to	a	large	radius,	it	will	be	in	a	stronger	field	which	will	bend	it	back	toward	the	correct	radius.	If	it	goes	to	too	small	a	radius,	the	bending	will	be	less,	and	it	will	be	returned	toward	the
design	radius.	If	a	particle	is	once	started	at	some	angle	with	respect	to	the	ideal	circle,	it	will	oscillate	about	the	ideal	circular	orbit,	as	shown	in	Fig.	29–11.	The	radial	focusing	would	keep	the	particles	near	the	circular	path.	Fig.	29–12.Radial	motion	of	a	particle	in	a	magnetic	field	with	a	small	negative	slope.	Actually	there	is	still	some	radial
focusing	even	with	the	opposite	field	slope.	This	can	happen	if	the	radius	of	curvature	of	the	trajectory	does	not	increase	more	rapidly	than	the	increase	in	the	distance	of	the	particle	from	the	center	of	the	field.	The	particle	orbits	will	be	as	drawn	in	Fig.	29–12.	If	the	gradient	of	the	field	is	too	large,	however,	the	orbits	will	not	return	to	the	design
radius	but	will	spiral	inward	or	outward,	as	shown	in	Fig.	29–13.	Fig.	29–13.Radial	motion	of	a	particle	in	a	magnetic	field	with	a	large	negative	slope.	We	usually	describe	the	slope	of	the	field	in	terms	of	the	“relative	gradient”	or	field	index,	$n$:	\begin{equation}	\label{Eq:II:29:2}	n=\frac{dB/B}{dr/r}.	\end{equation}	A	guide	field	gives	radial
focusing	if	this	relative	gradient	is	greater	than	$-1$.	Fig.	29–14.A	vertical	guide	field	as	seen	in	a	cross	section	perpendicular	to	the	orbits.	A	radial	field	gradient	will	also	produce	vertical	forces	on	the	particles.	Suppose	we	have	a	field	that	is	stronger	nearer	to	the	center	of	the	orbit	and	weaker	at	the	outside.	A	vertical	cross	section	of	the	magnet
at	right	angles	to	the	orbit	might	be	as	shown	in	Fig.	29–14.	(For	protons	the	orbits	would	be	coming	out	of	the	page.)	If	the	field	is	to	be	stronger	to	the	left	and	weaker	to	the	right,	the	lines	of	the	magnetic	field	must	be	curved	as	shown.	We	can	see	that	this	must	be	so	by	using	the	law	that	the	circulation	of	$\FLPB$	is	zero	in	free	space.	If	we	take
coordinates	as	shown	in	the	figure,	then	\begin{equation}	(\FLPcurl{\FLPB})_y=\ddp{B_x}{z}-\ddp{B_z}{x}=0,otag	\end{equation}	or	\begin{equation}	\label{Eq:II:29:3}	\ddp{B_x}{z}=\ddp{B_z}{x}.	\end{equation}	Since	we	assume	that	$\ddpl{B_z}{x}$	is	negative,	there	must	be	an	equal	negative	$\ddpl{B_x}{z}$.	If	the	“nominal”	plane	of
the	orbit	is	a	plane	of	symmetry	where	$B_x=0$,	then	the	radial	component	$B_x$	will	be	negative	above	the	plane	and	positive	below.	The	lines	must	be	curved	as	shown.	Such	a	field	will	have	vertical	focusing	properties.	Imagine	a	proton	that	is	travelling	more	or	less	parallel	to	the	central	orbit	but	above	it.	The	horizontal	component	of	$\FLPB$
will	exert	a	downward	force	on	it.	If	the	proton	is	below	the	central	orbit,	the	force	is	reversed.	So	there	is	an	effective	“restoring	force”	toward	the	central	orbit.	From	our	arguments	there	will	be	vertical	focusing,	provided	that	the	vertical	field	decreases	with	increasing	radius;	but	if	the	field	gradient	is	positive,	there	will	be	“vertical	defocusing.”	So
for	vertical	focusing,	the	field	index	$n$	must	be	less	than	zero.	We	found	above	that	for	radial	focusing	$n$	had	to	be	greater	than	$-1$.	The	two	conditions	together	give	the	condition	that	\begin{equation*}	-1
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